- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0010000002000000
- More
- Availability
-
12
- Author / Contributor
- Filter by Author / Creator
-
-
Bennington, Michael J (2)
-
Chiel, Hillel J (2)
-
McManus, Jeffrey M (2)
-
Webster-Wood, Victoria A (2)
-
Chiel, Hillel J. (1)
-
Fernandez, Camila J (1)
-
Gill, Jeffrey P (1)
-
Kundu, Bidisha (1)
-
Li, Yanjun (1)
-
Liao, Ashlee S (1)
-
McManus, Jeffrey M. (1)
-
Quinn, Roger D (1)
-
Rogers, Stephen M (1)
-
Sukhnandan, Ravesh (1)
-
Susswein, Abraham J. (1)
-
Sutton, Gregory P (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract To understand how behaviors arise in animals, it is necessary to investigate both the neural circuits and the biomechanics of the periphery. A tractable model system for studying multifunctional control is the feeding apparatus of the marine molluskAplysia californica. Previousin silicoandin robotomodels have investigated how the nervous and muscular systems interact in this system. However, these models are still limited in their ability to matchin vivodata both qualitatively and quantitatively. We introduce a new neuromechanical model ofAplysiafeeding that combines a modified version of a previously developed neural model with a novel biomechanical model that better reflects the anatomy and kinematics ofAplysiafeeding. The model was calibrated using a combination of previously measured biomechanical parameters and hand-tuning to behavioral data. Using this model, simulated feeding experiments were conducted, and the resulting behavioral metrics were compared to animal data. The model successfully produces three key behaviors seen inAplysiaand demonstrates a good quantitative agreement with biting and swallowing behaviors. Additional work is needed to match rejection behavior quantitatively and to reflect qualitative observations related to the relative contributions of two key muscles, the hinge and I3. Future improvements will focus on incorporating the effects of deformable 3D structures in the simulated buccal mass.more » « lessFree, publicly-accessible full text available December 1, 2026
-
Fernandez, Camila J; McManus, Jeffrey M; Li, Yanjun; Bennington, Michael J; Quinn, Roger D; Chiel, Hillel J; Webster-Wood, Victoria A (, Springer Nature Switzerland)Free, publicly-accessible full text available December 13, 2025
-
McManus, Jeffrey M.; Chiel, Hillel J.; Susswein, Abraham J. (, Learning & Memory)
An official website of the United States government
